

1

Arduino for the Cloud
Arduino Yùn and Arduino Yùn Shield
By Dr. Claus Kühnel

TABLE OF CONTENTS

1	 Preface...2
2	 Arduino Yùn Hardware..2
3	 Update the Firmware..4
4	 Network Configuration..4
5	 Network Performance..6
6	 Connecting Two Worlds...7
7	 Collecting Weather Data..8
	 7.1	 Temperature and Humidity by SHT31...9
	 7.2	 Query Weather Underground..13
	 7.3	 Visualize Weather Data by ThingSpeak..14
8	 Conclusion.. 17
9	 References..17

2

1 • Preface
In any survey of the relevant forums and portals addressing microcontroller technology, you cannot
miss the topic of Arduino—the open-source prototyping platform based on flexible and easy-to-use
hardware and software.

The primary motivation for adopting Arduino is direct interaction with an operating environment,
which it can control via sensors and various actors. The field of “physical computing” addresses the myr-
iad applications for which access to, and control of, the environment is important.

Thanks to its simple and accessible user experience, Arduino has been deployed in countless and var-
ied projects and applications. The Arduino software is easy to use for beginners yet flexible enough for
advanced users. Consequently, makers and professionals alike use Arduino for purposes spanning the
evaluation of technology to prototyping to commercial and industrial products.

The increasing complexity of today’s requirements for electronic systems have long exceeded the ca-
pabilities of classic microcontrollers alone. In most cases now the networking of components is impera-
tive, the absence of which would render the Internet of Things (IoT) wishful thinking.

This eBook will demonstrate how the Arduino Yùn can be used to close the gap between controlling
the environment and the networking of information.

2 • Arduino Yùn Hardware
The Arduino Yùn is not the only device of the Arduino family that is suitable for networking. Let us
have a look into the Arduino Products page (https://www.arduino.cc/en/Main/Products) for IoT devices.
Table 1 on the next page shows the most important Arduinos from the IoT area of the above-mentioned
website.

Arduino Yùn, Arduino Industrial 101, and Arduino Yùn Mini use an Atmel ATmega32u4 as microcon-
troller, as does the Arduino Leonardo. On the network side, we find a Linux device based on Qualcomm’s
Atheros AR9331 running Linino, an OpenWRT derivative. Figure 1 shows an Arduino Yùn. You can see
clearly the building block around the Atheros 9331 and the USB and network connectors.

The Arduino Tian offers more performance in both areas. The microcontroller in this case is the Atmel
SAMD21, a 32-Bit Cortex-M0+, and the Atheros AR9331 is replaced by an AR9432. All these Arduinos offer
Ethernet TCP/IP and Wi-Fi communication. A USB Host interface allows expansions via USB for the
Linux device, enabling, for example, memory enhance-
ment with USB stick or USB hard disk, the connection of
a USB webcam, or other USB devices.

The next entries in Table 1 show Arduino Ethernet
and Arduino Leonardo ETH. Both boards get their net-
work capability by a Wiznet W5x00 Ethernet Controller
connected via serial interface to the microcontroller.
Both boards offer Ethernet TCP/IP only. The Arduino
MKR1000 uses an Atmel SAMD21 as microcontroller and
an Atmel ATWINC1500 IoT Module offering Wi-Fi Direct Figure 1 | Arduino Yùn

https://www.arduino.cc/en/Main/Products

3

and Soft-AP support. There is no wired Ethernet TCP/IP.
With the Arduino Yùn shield (Figure 2) or the Arduino Ethernet shield you can build your own device

based on either the Arduino Uno or Arduino Leonardo.
Now we come to the decision of which Arduino device to use for our project.
Arduino Yùn is an expensive part, but it offers everything we need for physical computing and net-

working. If you want to go cheaper, then you have to re-
duce the functional and/or performance requirements.

If you happen to have an Arduino Uno or Leonardo
available, then you can reduce cost by using an Arduino
Yùn shield, yielding equivalent functionality.

Furthermore, Arduino is open-source hardware, and
therefore all of the original design files (Eagle CAD) for
the Arduino hardware are available under a Creative
Commons Attribution Share-Alike license (CC BY-SA) [1].

Arduino Type Microcontroller Network ETH WiFi USB Price

Arduino Yùn ATmega32u4 Atheros AR9331 802.3
10/100 Mbit/s

802.11b/g/n
2.4 GHz

Type-A
2.0 Host $ 71.99

Arduino
Industrial 101 ATmega32u4 Atheros AR9331i

802.3
10/100 Mbit/s
(on headers)

802.11 b/g/n
2.4 GHz

2.0
Host (on
headers)

$ 38.83

Arduino
Yùn Mini ATmega32u4 Atheros AR9331 802.3

10/100 Mbit/s
802.11 b/g/n
2.4 GHz 2.0 Host $ 68.33

Arduino
Tian Atmel SAMD21 Atheros AR9342

802.3
10/100/1000
Mbit/s

802.11 b/g/n
2.4 GHz du-
al-band

Type-A
2.0 Host $ 96.51

Arduino
Ethernet ATmega328

W5100 TCP/IP
Embedded Ethernet
Controller

10/100Mbit/s n.a. n.a. $ 44.26

Arduino
Leonardo ETH ATmega32u4

W5500 TCP/IP
Embedded Ethernet
Controller

10/100Mbit/s n.a. n.a. $ 48.69

Arduino
MKR1000 Atmel SAMD21 ATWINC1500 n.a. 802.11 b/g/n

2.4 GHz

embedded
host and
device

$ 35.49

Arduino
Yùn Shield n.a. Atheros AR9331 802.3

10/100Mbit/s 802.11b/g/n Type-A
2.0 Host $ 48.70

Arduino
Ethernet
Shield V2

n.a.
W5500 TCP/IP
Embedded Ethernet
Controller

10/100Mbit/s n.a. n.a. $ 24.40

Arduino Uno ATmega328 n.a. n.a. n.a. Virtual
COM port $ 22.17

Arduino
Leonardo ATmega32u4 n.a. n.a. n.a. Virtual

COM port $ 19.97

Table 1 | Arduinos for Networking

Figure 2 | Arduino Yùn

Shield (here named

as Genuino)

4

This license allows for both personal and commercial derivative works, as long as they credit Arduino
and release their designs under the same license.

In my book covering Arduino Yùn [2] I used a Dragino Yùn shield [3] along with the Arduino Yùn. This
shield is compatible with the Arduino Yùn shield and was earlier available. Dragino fulfills the license
conditions, with design files published on Github.

Beware, though, that counterfeits abound. While such noncompliant clones cost less than authentic
Arduino devices, honoring the license terms helps the Arduino Foundation to maintain an excellent com-
munity, which also publishes up-to-date tutorials and documenta-
tion, as well as managing the required certifications (e.g., FCC).

The Arduino software is also open source. The source code for
the Java environment is released under the GPL and the C/C++ mi-
crocontroller libraries are under the LGPL [4][5].

Finally, a word about the names Arduino and Genuino. This is an
artifact of branding issues that were resolved with organizational
and regional management changes at the Foundation. Today there
is a single Arduino organization [6].

3 • Update the Firmware
Software is always “under construction.” This means you should al-
ways use the latest revision of software when starting a new project.

The actual Arduino Yún Linux OS is OpenWRT-Yún 1.5.3. In most
cases the installed OS version may differ. Always download the
latest stable Linux OS to make your Arduino Yún more stable and
feature rich.

For upgrading the Linux OS there is a step-by-step instruction
at the Arduino website https://www.arduino.cc/en/Tutorial/YunSy-
supgrade. I used the easy way via the Web Panel to get the latest
stable Linux OS on my Arduino Yún.

4 • Network Configuration
Thanks to the network interface, you can integrate the Arduino Yún
into your home network as well. I consider here primarily the wire-
less interface, because the Arduino Yún can be deployed without
long cable connections near sensors, for example.

For the configuration of the network I used the Web Panel again
and connected the Arduino Yún with my router as shown in Figure
3. After saving the configuration I found a new member in the net-
work. Here I use the Android app Fing (Figure 4) to detect devices
in my network and find myYun with the IP address 192.168.178.175.

Now I can access the Arduino Yún via SSH as shown in Figure 5.

Figure 3 | Network Configuration

Figure 4 | myYun in the network

https://arduino.cc/download_handler.php?f=/openwrtyun/1/YunSysupgradeImage_v1.5.3.zip
https://arduino.cc/download_handler.php?f=/openwrtyun/1/YunSysupgradeImage_v1.5.3.zip
https://arduino.cc/download_handler.php?f=/openwrtyun/1/YunSysupgradeImage_v1.5.3.zip
https://www.arduino.cc/en/Tutorial/YunSysupgrade
https://www.arduino.cc/en/Tutorial/YunSysupgrade

5

We can see that BusyBox v1.19.4 and a Linux kernel 3.3.8 are installed.
Figure 6 shows the integration of the Arduino Yún into my home network. The Arduino Yún is con-

nected with the development PC via the on-board micro-USB connector. Via this connector, the Arduino
obtains its power and the software upload can occur. As you will see later I use the WLAN connection
for software upload. Therefore, for powering the Arduino Yún, a mobile phone charger equipped with a
micro-USB connector is sufficient. In Figure 6, this part is not shown.

Figure 5 | SSH access to Arduino Yún

Figure 6 | Arduino Yún in my network

6

5 • Network Performance
When we prepare an IoT project with an Arduino Yún it is important to know the network performance.
The networking performance was measured for an Arduino with Ethernet shield [7].

Using the speed test tool iperf we can do the same. The Arduino Yún serves as iperf server and a Win-
dows PC as iperf client.

First we have to install iperf on our Arduino Yún by the command:

$ opkg install iperf

and use the Arduino Yún as the server for this test. Figure 7 shows how to start the server side for the
bandwidth test.

My Windows development PC serves as iperf client. It calls the IP address of the Arduino Yún and the
same port. The option –d makes the test in both directions. Figure 8 shows the command to start the
iperf client from Windows command line.

Figure 7 | iperf Server on Arduino Yún

Figure 8 | iperf Client on Windows PC

7

If your PC has no iperf installed you can download it from https://iperf.fr/iperf-download.php. Please
pay attention to the version of iperf. If on Arduino Yún iperf-2.0 is installed, then you have to install the
same version on the client side.

From Figure 7 and/or Figure 8 we get a bandwidth of over 30 MBits/sec for this configuration. For
Arduino with Ethernet shield this result was about 3 MBits/sec only in [7]. This is a very important point
for the cost-performance discussion in Chapter 2.

6 • Connecting Two Worlds
As described in Chapter 2, the Arduino Yún includes two processors. The Bridge library ensures that
both processors can communicate and hides the implementation details from the user. Figure 9 shows
how the Bridge connects the microcontroller side to the Linux side, and vice versa.

The two processors allow the separation of real-time tasks from tasks without real-time requirements
effectively. All tasks that must fulfill real-time requirements should be placed on the microcontroller.
Here short routines and/or the interrupt-system can react as expected.

 A very good example is the access to 1-Wire devices like the well-known and often-used DS1820 tem-
perature sensor with its hard timing conditions. The access to a DS1820 sensor from a Linux device is not
very reliable and it absolutely requires error handling.

Interrupts can help in time-critical tasks. In my Arduino book [8] I include a chapter covering the AT-
mega interrupts.

The Bridge library simplifies communication between the two processors (http://arduino.cc/en/Ref-
erence/YunBridgeLibrary). Bridge commands from ATmega32u4 will be interpreted by Python on
AtherosAR9331. Initiated by ATmega32u4, commands on the Linux side can be executed. Data exchange

ATmega
32u4

USB
Prog.

ARDUINO ENVIRONMENT LINUX ENVIRONMENT

Rx Tx

Tx Rx

USB
Host

SD
Card

WiFi
Interface

ETH
Interface

Linino
AR 9331Bridge

Figure 9 | Bridge

https://iperf.fr/iperf-download.php
http://arduino.cc/en/Reference/YunBridgeLibrary
http://arduino.cc/en/Reference/YunBridgeLibrary

8

between both CPUs is organized by shared memory.
Via the Bridge library, the ATmega32u4 is extended with functions that provide network connection

and other functions on a Linux device. Conversely, the Linux device gains simpler and faster access to
sensors and actuators through this microcontroller supplement.

The Bridge library contains several classes described in Table 2 (http://arduino.cc/en/Reference/
YunBridgeLibrary).

In the next chapter we will
have a look into program exam-
ples that use the Bridge library
in the described way.

7 • Collecting
Weather Data
To collect weather data we have
different possibilities. We can
use sensors to measure local
temperature, humidity, baro-
metric pressure, etc., or we can
ask a weather portal on the in-
ternet for weather data of a local
measuring station.

To visualize these measured

CLASS DESCRIPTION

Process Process is used to launch processes on the Linux processor, and other things like shell scripts.

Console
Console can be used to communicate with the network monitor in the Arduino IDE, through a shell.
Functionally, it is very similar to Serial.

FileIO An interface to the Linux file system. Can be used to read/write files on the SD card.

HttpClient Creates an HTTP client on Linux. Acts as a wrapper for common CURL commands by extending Process.

Mailbox An asynchronous, session-less interface for communicating between Linux and Arduino.

Bridge Client An Arduino-based HTTP client, modeled after the EthernetClient class.

Bridge Server An Arduino based HTTP server, modeled after the EthernetServer class.

Temboo An interface to Temboo.com making it easy to connect to a large variety of online tools.

Table 2 | Components of the Bridge library

Figure 10 | Arduino IDE

http://arduino.cc/en/Reference/YunBridgeLibrary
http://arduino.cc/en/Reference/YunBridgeLibrary

9

data and to embed them into a website we can use ThingSpeak, for example.
Before we get into the program examples, a few preliminary remarks are necessary. In Chapter 3 I

described the firmware update for the Arduino Yún. It is the same for the Arduino IDE. The actual ver-
sion of Arduino IDE is 1.8.2. You will get it from the Arduino website https://www.arduino.cc/en/Main/
Software for Windows, MacOS, and Linux.

I use the WLAN connection for software download and console IO. The micro-USB of the board is
used for powering only.

Figure 10 shows the Arduino IDE v1.8.2 with selected ‘Arduino Yún’ (Board) and ‘myYUN at 192.168.178.175’
(Port). These are the preconditions for all further steps described here.

Telnet can be used for the communication with the console. If you redirect port 8888 of the Arduino
Yún IP address to localhost:6571 then you can access the console from PC by telnet 192.168.178.175 8888 in
the configuration here [9].

You have to install socat for this redirection following these steps:

$ opkg update

$ opkg install socat

$ (socat TCP-LISTEN:8888,fork TCP:127.0.0.1:6571) &

7.1 • Temperature and Humidity by SHT31
There are various sensors to measure temperature and humidity. You will find a lot of applications using
the DHT11/DHT22. To get better accuracy I use here the Grove SHT31 sensor based on Sensirion’s SHT31
sensor [10]. The SHT31 library can be downloaded from Grove’s Github https://github.com/Seeed-Studio/
Grove_SHT31_Temp_Humi_Sensor.

Only a few adaptions to the Grove source code are needed and the sensor values will be sent to the
console. The complete access to the sensor via I2C is encapsulated in the SHT31 library. Listing 1 shows
the source code of the program sht31.ino.

Listing 1 | Source code sht31.ino
#include <SHT31.h>

#include <Arduino.h>

#include <Wire.h>

#include <Console.h>

const int ledPin = 13; // the pin that the LED is attached to

const unsigned int cycle = 60000; // measuring cycle 60 sec

SHT31 sht31 = SHT31();

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://github.com/Seeed-Studio/Grove_SHT31_Temp_Humi_Sensor
https://github.com/Seeed-Studio/Grove_SHT31_Temp_Humi_Sensor

10

void setup()

{

 // initialize serial communication:

 Bridge.begin();

 Console.begin();

 sht31.begin();

 while (!Console); // wait for Console port to connect.

 Console.println(“You’re connected to the Console”);

 // initialize the LED pin as an output:

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 float temp = sht31.getTemperature();

 float hum = sht31.getHumidity();

 Console.print(“Temp = “);

 Console.print(temp);

 Console.println(“ C”); //The unit for Celsius because original

 //arduino don’t support special symbols

 float fTemp = temp * 1.8 + 32;

 Console.print(“Temp = “);

 Console.print(fTemp);

 Console.println(“ F”); //The unit for Fahrenheit because original

 //arduino don’t support special symbols

 Console.print(“Hum = “);

 Console.print(hum);

 Console.println(“ %”);

 Console.println();

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(cycle);

}

We have two ways to see the console output. The easiest way is to use the serial monitor from Ardu-
ino IDE. Figure 11 shows connecting and monitoring the output. The test here was done inside at room
conditions. The second way is to call the Telnet client installed on PC and connect to the Arduino Yún by
the command o(pen) 192.168.178.175 8888. You will get the same output but independent from the Arduino
IDE (Figure 12).

11

To have the measured values on the Linux side as well we can use the FileIO class to save these values
in RAM. Listing 2 shows the enhancements (marked bold) in the source code.

Listing 2 | Source code sht31fio.ino

#include <SHT31.h>

#include <Arduino.h>

#include <Wire.h>

#include <Console.h>

#include <FileIO.h>

Figure 11 | Serial Monitor of Arduino IDE

Figure 12 | Telnet client on PC

12

const int ledPin = 13; // the pin that the LED is attached to

const unsigned int cycle = 60000; // measuring cycle 60 sec

SHT31 sht31 = SHT31();

void setup()

{

 // initialize serial communication:

 Bridge.begin();

 Console.begin();

 sht31.begin();

 FileSystem.begin();

 while (!Console); // wait for Console port to connect.

 Console.println(“You’re connected to the Console”);

 // initialize the LED pin as an output:

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 digitalWrite(ledPin, HIGH); // sets the LED on

 float temp = sht31.getTemperature();

 float hum = sht31.getHumidity();

 Console.print(“Temp = “);

 Console.print(temp);

 Console.println(“ C”); //The unit for Celsius because original

 //arduino don’t support special symbols

 float fTemp = temp * 1.8 + 32;

 Console.print(“Temp = “);

 Console.print(fTemp);

 Console.println(“ F”); //The unit for Fahrenheid because original

 //arduino don’t support special symbols

 Console.print(“Hum = “);

 Console.print(hum);

 Console.println(“ %”);

 Console.println();

 File f = FileSystem.open(“/tmp/TEMP”, FILE_WRITE);

 f.print(temp);

13

 f.close();

 File ff = FileSystem.open(“/tmp/TEMPF”, FILE_WRITE);

 ff.print(fTemp);

 ff.close();

 File fff = FileSystem.open(“/tmp/HUMI”, FILE_WRITE);

 fff.print(hum);

 fff.close();

 digitalWrite(ledPin, LOW); // sets the LED off

 delay(cycle);

}

7.2 • Query Weather Underground
If you lack access to a local weather station but are interested in local weather data, then weather data
from Weather Underground (http://www.wunderground.com) can help to close this gap.

The last program examples were compiled for the ATmega32u4 in the Arduino IDE. For the task here
we need the Linux device only. On most Linux devices you also have the GNU C compiler gcc available to
compile application programs directly on the target. Here, under OpenWRT, this is not the case. Hence,
it takes a suitably equipped developer’s PC to compile a C/C++ source code for our target. But this is no
problem. We have Python available on Arduino Yún, and I built wunderweather.py asking Weather Un-
derground for local weather data. Local means here my location, Altendorf in Switzerland.

Listing 3 shows the Python source code of wunderweather.py. You have to create an account at Weath-
er Underground to get an API key and should adapt your location. After output the weather data tem-
perature and humidity will be saved as variables in RAM.

Listing 3 | Source code wunderweather.py

#!/usr/bin/python

Reading weather data from wunderground network

import urllib2

import json

f = urllib2.urlopen(‘http://api.wunderground.com/api/<API_KEY>/

 geolookup/conditions/q/Switzerland/Altendorf.json’)

json_string = f.read()

parsed_json = json.loads(json_string)

location = parsed_json[‘location’][‘city’]

temp_c = parsed_json[‘current_observation’][‘temp_c’]

https://www.wunderground.com/
https://www.google.ch/maps/place/Altendorf/@47.1657806,8.7904557,13z

14

temp_f = parsed_json[‘current_observation’][‘temp_f’]

rel_hum = parsed_json[‘current_observation’][‘relative_humidity’]

weather = parsed_json[‘current_observation’][‘weather’]

station = parsed_json[‘current_observation’][‘station_id’]

updated = parsed_json[‘current_observation’][‘observation_time_rfc822’]

print(“Current temperature in %s is: %s *C” % (location, temp_c))

print(“Current temperature in %s is: %s *F” % (location, temp_f))

print(“Current relative humidity is: %s “ % (rel_hum))

print(“Weather is %s “ % (weather))

print(“Weather station is %s” % (station))

print(“Last updated: %s” % (updated))

f.close()

f = open(“/tmp/TEMP”,”w”)

f.write(str(temp_c))

f.close()

f = open(“/tmp/TEMPF”,”w”)

f.write(str(temp_f))

f.close()

f = open(“/tmp/HUMI”,”w”)

f.write(str(rel_hum)[:-1])

f.close()

Figure 13 shows the call and output of the program wunderweather.py. After a wonderful springtime
we got a winter break again.

7.3 • Visualize Weather Data by ThingSpeak
To visualize the requested weather data we will upload it to the ThingSpeak, an open IoT platform in the
cloud. As usual, you have to create an account. After that you can collect data in a so-called channel. This

Figure 13 | Call and output of wunderweather.py

15

channel has an API key required by the program sending data to this channel.
Listing 4 shows the source of the Shell script thingspeak.sh. This script reads temperature and humid-

ity saved as variables in RAM and sends it by cURL to the ThingSpeak server.

Listing 4 | Source code thingspeak.sh

#!/bin/sh

echo “Send data to Thingspeak Server”

#Thingspeak

api_key=’<API_Key>’

DATE=”$(date +”%d-%m-%Y”)”

read TEMP < /tmp/TEMP		

echo “Temperature = $TEMP *C”

read TEMPF < /tmp/TEMPF

echo “Temperature = $TEMPF *F”

read HUMI < /tmp/HUMI		

echo “Rel. Humidity = $HUMI %”

curl --insecure --data \

 “api_key=$api_key&field1=$TEMP&field2=$TEMPF&field3=$HUMI&field4=$DATE” \

 https://api.thingspeak.com/update > log 2>&1

Figure 14 shows the call and output of the program thingspeak.sh.
To automate the process of requesting weather data I placed the Shell script weather.sh into the

Crontab (Figure 15).

Figure 14 | Call and output thingspeak.sh

Figure 15 | List of Crontab entries

16

The script itself is very simple (Listing 5). You can use sht31.ino or wunderweather.py to generate the
weather data, and thingspeak.sh will upload the data afterwards. If you use sht31.ino then comment the
call of wunderweather.py. Otherwise, replace sht31.ino by blink.ino as heartbeat. You will find it on my
Github, too.

Listing 5 | Source code weather.sh

#!/bin/sh

/root/wunderweather.py

/root/thingspeak.sh

echo “Done.”

Finally, you can see a day profile of temperature and humidity from the 19th to 20th of April 2017
for my location here in Switzerland (Figure 16). You can find actual profiles at https://thingspeak.com/
channels/255753.

Figure 16 | Data visualization by ThingSpeak

https://thingspeak.com/channels/255753
https://thingspeak.com/channels/255753

17

8 • Conclusion
This eBook describes the Arduino Yún configured for cloud applications. Due to the combination of
microcontroller and Linux device you can separate effectively real-time tasks from tasks that need
network access.

All programs introduced here are saved on my Github (https://github.com/ckuehnel/arduino) for
download.

Further explanations to Arduino Yún and the Arduino Yún shield as an add-
on for a conventional Arduino can be found in my book, Arduino for the Cloud.

Have fun with Arduino Yún!

About the Author
Dr. Claus Kuhnel studied at and graduated from the Technical University of
Dresden (D) in the field of information electronics. This was followed by an ed-
ucation in biomedical engineering. Professionally, he is responsible for devel-
opment of embedded systems for lab devices. In addition to his professional
tasks, he has published numerous articles and books on microcontroller-related issues.

9 • References
[1]	 Creative Commons Attribution Share-Alike license

https://creativecommons.org/licenses/by-sa/1.0/
[2]	 Kuhnel, C.:

Arduino for the Cloud - Arduino Yun and Dragino Yun Shield
ISBN 978-1-62734-035-9
http://www.universal-publishers.com/book.php?method=ISBN&book=1627340351

[3]	 Dragino Yùn shield
http://www.dragino.com/products/yunshield/item/86-yun-shield.html

[4]	 GNU GENERAL PUBLIC LICENSE
https://www.gnu.org/licenses/gpl-3.0.txt

[5]	 GNU LESSER GENERAL PUBLIC LICENSE
https://www.gnu.org/licenses/lgpl-3.0.txt

[6]	 TWO ARDUINOS BECOME ONE
https://blog.arduino.cc/2016/10/01/two-arduinos-become-one-2/

[7]	 How to Measure Arduino Network Performance
http://www.instructables.com/id/How-to-measure-Arduino-network-performance/

[8]	 Kühnel, C.:
Arduino - Hard- und Software Open Source Plattform (German language)
ISBN 978-3-907857-16-8
https://www.amazon.de/Arduino-Hard-Software-Source-Plattform/dp/390785716X

[9]	 Console Class
http://www.ibuyopenwrt.com/index.php/8-yun-compatible/158-console-class

[10]	 Datasheet SHT3x-DIS - Humidity and Temperature Sensor
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/
2_Humidity_Sensors/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf

https://github.com/ckuehnel/arduino
http://www.universal-publishers.com/book.php?method=ISBN&book=1627340351
https://creativecommons.org/licenses/by-sa/1.0/
http://www.universal-publishers.com/book.php?method=ISBN&book=1627340351
http://www.dragino.com/products/yunshield/item/86-yun-shield.html
https://www.gnu.org/licenses/gpl-3.0.txt
https://www.gnu.org/licenses/lgpl-3.0.txt
https://blog.arduino.cc/2016/10/01/two-arduinos-become-one-2/
http://www.instructables.com/id/How-to-measure-Arduino-network-performance/
https://www.amazon.de/Arduino-Hard-Software-Source-Plattform/dp/390785716X
http://www.ibuyopenwrt.com/index.php/8-yun-compatible/158-console-class
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf
https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/2_Humidity_Sensors/Sensirion_Humidity_Sensors_SHT3x_Datasheet_digital.pdf
http://www.universal-publishers.com/book.php?method=ISBN&book=1627340351

https://technicacuriosa.com/register/
https://twitter.com/TechnicaCuriosa

